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ABSTRACT: The principles of topology in condensed matter physics have
expanded to areas such as photonics, acoustics, electronics, and mechanics. Their
extension to dynamic (soft) matter could enable the control and design of
topological thermodynamic (micro)states and nonreciprocal dynamics, potentially
leading to paradigmatic applications in molecular and thermal waveguiding, logics,
and energy management. This Perspective explores distinct topological concepts for
dynamic matter and prospective function. Topological tools are exemplified and
discussed for the study of nonlocal order parameters or invariants in dynamic
molecular matter, toward the engineering of assemblies, reactions, and system
chemistry with unconventional global propertiesa scope which has the potential
to push the frontiers of physical chemistry and transform chemical topology from
form to function.

Topology and corresponding order parameters have
substantially contributed to the understanding of complex

systems for centuries.1−3 In the context of (bio)chemistry,
topology has been employed to analyze the shape or form of
polymers, (supra)molecules, proteins, and chiral liquid
crystals.4−10 Conversely, our perception of applied topology in
physics has been shifting from the description of form to a
property of waves and particles in bands11,12 and intrinsic
quantum order,13 with extraordinary functional implications.
This has led to a paradigm shift in condensed matter which has
now extended to quantum computing, ultracold atom science,
photonics, phononics, and mechanics. Protection against
disorder, nonreciprocity, and waveguiding are among the
extravagant topological band properties which have been
demonstrated at boundaries between materials, and their
realization at finite temperatures holds great promise for the
(bio)molecular and soft matter fields.14 In this Perspective, we
outline diverse topological concepts related to dynamic
molecular matter. The background section introduces notions
of band topology familiar to condensed matter physics (Scheme
1), along with representative applications of noninteracting
symmetry-protected topological states (Figure 1). The second
section offers experimental examples related to topological
defects and reaction topology, at transitions between topological
configurations (Figure 2). The third and fourth sections discuss
micro- and macrostates from effective band topology models,
relevant to thermal (Figure 3) and matter (Figure 4) transport.
This panorama may stimulate the exploration of broadly defined
topological dynamic matter inspired by effective models in
quantum matter, that is, the exploration of molecular, biological
and colloidal active matter expressing functional topological
nonlocal properties.

Background. In the past, particles or waves in solids were
studied locally, departing from the connectivity of the atoms in a
(minimal or primitive) unit cell (Scheme 1, red). Such modeling
undermined the role of the connectivity and symmetry at the
boundaries of real materials, which were once thought
unnecessary for the description of their bulk properties.
Topological tools enable the study of nonlocal order,
connectivity, and symmetries of matter. The mathematical
branch of topology develops algebraic or differential tools to
study shapes: symmetric or compact spaces such as rings, tori,
and matrices (Scheme 1a−c).3 In such compact spaces, an order
parameter (topological invariant) can be defined and associated
with the finite material or system with boundaries (Scheme 1d−
f).12 Nowadays, applied topology employs topological models
and invariants to classify unconventional physical properties of
materials both in time and in space. In the archetypical
electronic band structure example leading to the 1985 and 2016
Nobel Prize in physics (the integer quantum Hall effect,
QHE18), the local atom connectivity in the crystalline unit cell
alone could not explain the quantization and robustness of a
measured quantity (the von Klitzing constant h·e−2) in the
presence of a magnetic field. Instead, topological tools for
characterizing the (Berry) connectivity between electron’s
momenta19−21 helped explain the conductivity along the
boundary of the finite solid (the Hall conductivity): The
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quantization and robustness of the von Klitzing constant was
thus revealed when the Hall conductivity was found propor-
tional to an integer, an order parameter, or nontrivial topological
band invariant related to the Berry connectivity via the Chern−
Gauss−Bonnet theorem. One mathematical interpretation of
topological triviality for vectors along a path (a vector bundle) is
their reducibility to the trivial point. In the context of
(molecular) materials, the trivial point may represent the single
atom (or molecule) or the uniform atomic (or molecular)
background. At such “atomic limit”,22,23 it is safe to assume that a
material or solid can be simplified as a local unit cell of its
underlying components. In contrast, a nontrivial topology
epitomizes nonlocality. In the QHE, nontriviality is expressed in
the form of metallic-like boundary (edge) states, and sometimes
an insulating bulk, whereby the terms topological insulator and
topological edge states originate. The strategy of engineering
topological edge states in condensed matter physics has now
extended to photonics24,25 and circuits,26 beyond correlated
quantum materials.11

Because of nonlocality, microscopic states of nontrivial
topological matter may express important properties of band
topology such as protection against disorder, nonreciprocity,
and waveguiding, to mention a few (Figure 1). Take for instance
the topological photonic state of a coupled ring laser
microarray27 mimicking the Su−Schrieffer−Heeger (SSH)
model,17 which will be described in the next sections. Lasing
occurs from the single-mode edge state as a consequence of the

array topology; in this case, the boundary state “soliton” is
localized near the central ring (Figure 1a, top panel). Single-
mode lasing is robust against an induced defect, introduced by a
polymer layer (white square). In contrast, a trivial microlaser
array emits as a broadband laser, and defects affect its spectral
energy. Topological band insulators are not only restricted to the
quantum realm28 but can be defined mechanically29−31 and
acoustically.32−34 The portmanteau topological insulator effect,
the quantum spin Hall effect (QSHE),35 is closely related to the
integer QHE except for two aspects. First, instead of an
externally applied magnetic field, an equivalent (internal)
excitation is present. This is reproduced in the so-called Chern
insulator (CI)16 model. Second, the excitation is symmetric in
time, meaning that two, opposite spin 1/2 channels counter-
propagate (Kramers pairs). Spin-Chern insulator (spin-CI) and
related models include these effects.35−37 Spin 1/2 channels can
be emulated classically,29 by engineering double Dirac cones
with different polarizations for instance.33 With the appropriate
excitation and edge channels, a “thermal diode” at a frequency
window (Δω) can be, in principle, devised from a three-input
terminal as in Figure 1b, right.38 Such boundary (edge) states
evolve at interfaces between effective topological phases (see
next sections). Interfaces joining different topological domains
can be arbitrarily (re)configured into edge state waveguides, for
logics or storage applications. For example, the simulated steel-
pillar lattice in Figure 1c39 can be distorted from a trivial to a
nontrivial topology for the prospect of engineering switchable
acoustic waveguides.33,39,40 Following the success of photonics
and acoustics, the topological characterization of thermody-
namic materials is expected to expand the frontiers of physical
chemistry. Formal equivalences between the aforementioned
topological band models and open systems at the thermody-
namic limit are the subject of intense research.41−44 Together
with band topology, general topological notions are an
important departure point for the exploration of nonlocal
order in molecular systems and soft matter. For instance, in the
study of topological defects, molecular orientations define
vectors along a path for dynamic differential topology studies. In
topological reaction models, atomic displacements can enforce
symmetries familiar to algebraic analysis. These combined
perspectives set the scene for dynamical topological states of
matter at finite temperature.
Conf igurational Topology. A prospective field of study in

dynamic topology beyond band theory is related to “configura-
tional” topological order parameters within a dynamic system.
An example of one order parameter is the genus (g), an integer
(), which counts the number of holes in a compact object. It
can be related to the Gauss−Bonnet theorem (Figure 2) and
posed for common real-space topologies pertinent to supra-
molecular chemistry: A donut has a g = 1 and a plate has g = 0.
Consider a supramolecular rotor in Figure 1a which can be

Scheme 1. Applied Topology in Physical Chemistry:
Properties of Matter beyond Local Connectivitya

aTopological tools enable the nonlocal study of properties and
connectivity in matter, i.e., beyond a local unit cell (in red). In
differential or algebraic topology, usually a smooth (eigen)function in
a discrete material or system such as (quasi)momentum (kx,y), is
modelled within a compact space, e.g., (a) on a torus, (b) on a circle
or, (c) via its connectivity matrix.15 The corresponding finite material,
such as (d) a graphene nanoribbon cut from graphene,16 (e) a
diradical polyacetylene chain,17 or even a (f) Diels−Alder reaction15
can be described as a phase in the model and thus may reflect
topological properties and boundary (edge) states. Topological
models could therefore anticipate multiradical ground states, reaction
yields and potentially, thermodynamic states.

Topology develops algebraic or
differential tools to study shapes:
symmetric or compact spaces

such as rings, tori, and matrices.
Applied topology employs topo-
logical tools, models, and invari-

ants to classify the physical
properties of matter.
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realized on a silver surface45,46 following the deposition, self-
assembly, and confinement of dicyanosexiphenylene molecular
linkers with cobalt atoms under ultrahigh vacuum conditions.
Because of the boundary conditions (confinement in the
hexagonal pore of the lattice), three molecules define a propeller
with g = 1 (Figure 2b). The propeller conserves its topology
when rotating inside the hexagonal pore during the observation
time scale (hours) at temperatures up to 87 K. The simulated

dynamical pattern in Figure 2a results from two long-lived
conformations of the propeller differing by 60° rotational
symmetry. At higher temperatures, the topology of the propeller
breaks via one of the mechanisms depicted in Figure 2b and an
inversion of chirality is possible, yielding a markedly different
dynamical pattern in Figure 2a, right-hand side. Knots and twists
are also nonlocal order parameters and can be manipulated
between boundaries for distinctive molecular self-assem-

Figure 1. Examples of photonic and phononic topological function. (a) Robustness,27 (b) nonreciprocity,38 and (c) waveguiding39 are hallmark
boundary functionalities enabled by the control and engineering of topological matter. (a) A single-boundary state (“zero mode”), localized at the
center of a microlaser SSH array, is robust against defects (square) in the array. Adapted from ref 27. Copyright CC BY 4.0. (b) Boundary (edge)
phonon channels along a two-dimensional material can mimic a Chern insulator (CI) model in the presence of an excitation, toward efficient thermal
diodes.38 Adapted with permission from ref 38. Copyright 2017 American Physical Society. (c) An acoustic crystal simulated from steel pillars (inset)
can be distorted between its trivial and nontrivial topology by means of thermal regulation of acoustic gaps (Δ1 and Δ2) to define a thermally driven
sound switch39 along its boundary (white dashed line). Adapted with permission from ref 39. Copyright 2018 American Physical Society.

Figure 2. Topological classification of molecular configurations. (a) Supramolecules rotate while conserving their propeller shape below 87 K. At
higher temperatures (b), the propeller intermittently breaks to allow a chiral inversion of the propeller. The propeller can be characterized by its genus
(g), a topological invariant45 related to the Gauss−Bonnet formula: an area (A) integral of the Gaussian curvature (K) for solids without boundaries.
(c) The LC-1289 liquid crystal mixture can transition from a planar nematic to a half-Skyrmion (meson) phase.48 The half-Skyrmion phase can be
characterized by (d) its winding number ( w 1), a topological invariant. The winding number measures in this case the number of π twists.50 Adapted
with permission from ref 48. Copyright 2017 Springer Nature. (e) A chemical reaction may also undergo a topological phase transition, shown by the
reaction coordinate (t) in panel f. The transition is characterized by a topological invariant v(t)15 related to the connectivity (site-basis tight binding
Hamiltonian)matrix. Adapted with permission from ref 15. Copyright 2020 American Physical Society. (f) Noninteracting highest occupiedmolecular
orbital (HOMO) and lowest occupied molecular orbital (LUMO) eigenvalues along the reaction coordinate (t) and topological invariant (red curve).
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bly.10,47−50 Consider the transition between a planar nematic
phase and half-Skyrmion phase of the liquid crystal in Figure 2c,
which has been predicted to occur when heating of a planar
nematic phase or quenching of a high-temperature isotropic
phase51,52 and has been observed in ∼250 nm thin layers.48 The
transition occurs as the molecular wall or chain twist by an angle
(ϕ) of π degrees. The twist is a nonlocal order parameter, and a
winding number can be formally defined10 as a topological
invariant. The winding number describes the half-Skyrmion (or
meson) for systems which can assembly into square unit cells
(Figure 2c,d). Such half-Skyrmions and their full ϕ = 2π
counterparts, Skyrmions, are favored when forcing boundary
conditions (e.g., between glass slides) and can be manipulated
by electric fields and optical tweezers.47−50 The robustness of
half-Skyrmions is evidenced when considering their planar (or
vertical) uniform limit: Once self-assembled, half-Skyrmions
would necessarily require breaking supramolecular connectivity
to untwist them. As an example, consider a one-dimensional ϕ =
2π chain topology, inside a uniform planar nematic liquid crystal,
that is, a chain featuring twice the twist shown in Figure 2d. The
ϕ = 2π chain is trivially winded and can be unwound back to ϕ =
0 (or ϕ = 4π) by translating the start of the chain toward its end
and vice versa (similar to holding a belt with both hands and
exchanging hands). This is not the case for ϕ = π, 3π, 5π, and so
on, which would necessarily require a rotation, thereby tearing
the uniform, vertical boundary in order to set ϕ = 0. Thus, an
associated order parameter for twisted chains is, in principle, not
an integer (), but mod 2 integer (/2 or equivalently 2).
Formally, mathematical homological mappings are often
required to distinguish equivalent trivial topologies from
nontrivial ones.53 In homology, the order parameter is first
mapped to a mathematically symmetric space such as the unit
circle (1), which avoids ambiguity in the definition and
calculation of a topological invariant (cf. w 1 in Figure 2d). Thus,
algebraic groups are part of the topological space toolbox, as
much as a circle or torus. As such, it is often sufficient to look at
the algebraic symmetries of an associated matrix to define a
topological invariant. Such a symmetry-protected, algebraic
“topological periodic table”54−56 has been described extensively
and often arises when Hamiltonians or density matrices are
employed to describe the dynamics of a system, as exemplified in
the next sections.

In the previous examples, we mentioned how different
topological phases can evolve with temperature. What happens
at the transition boundary between two topologies, configura-
tional or otherwise? In band topology, the energy gap closes to
allow for a topological band invariant change, resulting in
boundary states (see next section). In topological reaction
models,15 exceptional points can occur at transition boundaries,
and might indicate nonadiabaticity. For instance, it has been
recently proposed via a tight-banding formalism15 that the
electronic structures of ethylene and cyclobutane have different
topologies (Figure 2e). When changing the distance (t) along
the reaction coordinate between them, so as to force a reaction,
the reaction’s topological invariant changes because of the

(interacting or noninteracting) “crossing” between the highest
occupied molecular orbital (HOMO) and unoccupied LUMO
in Figure 2f. The reaction between ethylenes to form
cyclobutane is thermally unfavored, proceeding rather in the
photoexcited state, following Woodward−Hoffmann frontier
orbital analysis. This is reflected in the change of topological
invariant during the reaction in Figure 2f, further substantiating
its nonadiabatic character. A related prospect regards
topological folding9 at the interface between configurational
topology of complex soft matter systems and topological
symmetric spaces. When a polymer is confined to a symmetric
space, a new “folded” real-space topology may evolve at finite
temperatures.57,58 The ensuing configurational topology could
be driven by both the symmetries of the target confinement in
algebraic space and the intrinsic topological classification of the
polymer connectivity.4 Algebraic representations15,57 of such
folding processes could be suitable for quantum folding
algorithms.59 In this manner, reaction topological models may
contribute to the chemical kinetics of self-assembly, folding, and
reactivity.
Rovibrational and Phonon Topology. Rovibrational states

defined by quantum numbers, similarly to electronic atomic
states, are a consequence of the apparent trivial connectivity
between momentum degrees of freedom in a molecule or
molecular architecture. For nontrivial connections in time and
energy, topological invariants may acquire the significance of
quantum numbers.60 Such topological band classification is
different than in the previous section, in that configurational
topology does not explicitly couple61 to energy or momentum
degrees of freedom. A quantum number precedes momentum
conservation and thus defines (quasi)particle excitations,
opening intriguing perspectives in energy transport and energy
conversion. Thus, a common departure point to study band
theory from a topological point of view is to consider one
portmanteau matrix class54,55 corresponding to the connectivity
(energy function or Hamiltonian) matrix for Fermions or
bosons under periodic boundary conditions. Hamiltonians of
systems which present chiral (or sublattice) and pair (or
particle-hole) symmetries such as the SSH model17 can be
described by a matrix class such as a Cartan class.54,55 The
topology and eigenvalues in such classes are simplified in terms
of Pauli matrices (Supporting Information). Through several
changes of variables, the phonon (bosonic) equivalent of the
(fermionic) SSH model may also be expressed in a Cartan class
space.29 An alternative, intuitive approach to understand the
topology of the phonon SSH model62,63 is to consider the
vibrational mode of the SSH model at the center of the unit cell
(Brillouin zone wavevector k = 0) and at the edge of it
(wavevector k = π). Solving the (SSH) phonon model for a
periodic chain consisting of different spring constants (Figure
3a),62−64 one finds two limiting cases. In the first case, the
stronger spring constant (+δ) lies at the center of the unit cell
and the chain can be considered as approximately independent
diatomic molecules. The top phonon band hosts an optical
mode, characterized by an out-of-phase (oop) stretch, with
atomsmoving at opposite directions from each other (Figure 3b,
left). In the second case, the top band features a hybrid behavior
(Figure 3b, right). At k = π, the mode transforms to an in-phase
(ip) displacement of neighboring atoms. Only at k = 0 is the oop
stretch recovered (Figure 3b, right). In other words, the top
band is neither fully optical nor fully acoustic. Instead, every
diatomic pair alternates between oop and ip oscillations within a
band, a phenomenon colloquially termed band inversion. A

Reaction topological models may
contribute to the chemical ki-
netics of self-assemby, folding,

and reactivity.
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dephasing along the length of a chain can be represented as a
vector twisting in the complex Bloch circle, in a manner similar
to the 1D twist chain, and it amounts to ϕ = π. A related
topological invariant is the Zak phase,65 a particular case of the
Berry geometrical phase in a single 1D band. The band structure
in Figure 3b adapted from ref 62 shows with color the dephasing
along the Brillouin zone. The nontrivial case is shown in the
right-hand side of Figure 3b, whereas the trivial case is shown in
the left-hand side. The intermediate case for the 1D phonon
chain, where all spring constants are equal (δ= 0) and the optical
and acoustic bands meet, is also depicted. In appearance, the
difference between the trivial and the nontrivial situation is
defined by the unit cell choice. Take the hypothetical example of
a trivial and nontrivial phonon topology for the periodic carbyne
polymer in Figure 3c. The two forms appear misleadingly
identical. However, the different unit cells portray distinct
boundaries for the open system, which are better illustrated
when connecting one unit cell to another, potentially defining a
floppy boundary state or “zero mode” vibrational soliton
(assuming the electronic structure remains unchanged, Figure
3c bottom). Such abstractions play an instrumental role in the
design of topological boundary states in real materials, as
discussed next.
In the previous sections, we learned that band topology

studies trivial and nontrivial phases in periodic materials,
whereby new boundary states may emerge at the interface
between different topological phases. This phenomenon is
known as the bulk-boundary correspondence (in Hermitian
systems66,67) and may be accompanied by changes in the bulk
density of states (for non-Hermitian systems56,68−73). A
topological edge, corner,74 or arc state75 enables the extravagant
functionality sought when engineering topological materials.
Boundary states extend over macroscopic crystal lengths and
feature finite bandwidths in the case of zero-energy mode flat-

bands (in the analogue of the SSH model) or enhanced
bandwidths with group velocities dω/dk > 0 in the analogues of
the CI model. Predicting topological states in crystalline
materials22,23,76−78 at finite temperatures is a challenging
endeavor (see below). Therefore, topological boundary states
are usually characterized and demonstrated ad hoc in diverse
functional settings, from diodes and logics to telecommunica-
tions and lasing (cf. the background section above). Two-
dimensional supramolecular ribbons are ideal testbeds for
inferring and probing topological properties in supramolecular
matter.79 A cyanotriangulane molecule at Au(111) interfaces
self-assembles into a chiral lattice with a unit cell reminiscent of a
SSH phonon model (Figure 3d). Simulations show that upon
lifting periodicity to form supramolecular nanoribbons, new
edge phonon bands evolve at the vacuum−ribbon boundary.
The boundary eigenstates are found between gaps in the bulk
band structure. The real-space projection depicts articulated
boundary states, exemplified by the mode at 14.6 cm−1 in Figure
3e. The functional properties of the boundary states are probed
by a sinusoidal excitation of a single supramolecular bond,
resulting in unidirectional energy transport of the excitation.
Interestingly, the excitation can propagate unidirectionally
under low-dissipation Langevin simulation environments at 30
K, suggesting robust nonreciprocal transport arising from
protected topological states at finite temperatures. As intro-
duced above, topological invariants associated with topological
edge phonons are well-known for algebraic, symmetry-enforced
mechanical toy models30−yet mandate careful analysis in
atomistic materials.80 Moreover, topological tools at finite
temperature formally differ from the topological invariants we
have introduced, such that boundary states at finite temperatures
cannot be formally inferred in the aforementioned “Hermitian”
SSH model. Once lattice-temperature, dissipations, and
fluctuations are considered, symmetries break down, either

Figure 3. Topology of molecular vibrations. (a) The phonon SSH model. When the spring constant at the unit cell center is weaker by −δ (cyan
spring), the optical band (top in the frequencyω band diagram) at the edge of the Brillouin zone transitions from the trivial case (b) out-of-phase (top
band left, red color) vibration, to both in-phase and out-of-phase (top band right, blue color) vibrations.62 Adapted with permission from ref 62.
Copyright 2020 John Wiley and Sons. (c) Such model expresses topologically protected edge states when a boundary is created by fixing the stronger
springs to a wall62 and can be hypothesized in an atomic chain as follows: Stitching the trivial and the nontrivial topologies of carbyne and assuming
stability, would yield a floppy boundary zero-energy mode (or soliton) at carbon Ce. (d) A realization of boundary vibrational states could involve an
array of 1D SSH “supramolecular” chains (left), joining to form a supramolecular ribbon (right). (e) Molecular simulations show79 that localized
boundary states evolve in this manner, toward phononic supramolecular (spin-)Chern insulators.
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because of new (non-Hermitian) terms in the Hamiltonian or
because of degrees of freedom acquiring different symme-
tries.43,81 Topological states in open and thermal systems are
currently the subject of intense theoretical research,41−44 along
with related boundary effects such as skin states.70,71 Experi-
ments on interfacial82−84 and relatedmodel85 molecular systems
are expected to complement theoretical research on thermal
(non)equilibrium dynamic topological matter, similarly to cold
atom research.81 Moreover, configurational topology represen-
tations of polymers and biopolymers could serve as input for
archetypical topological phononic Hamiltonians.44,54,55 For
example, one simplified approach would depart by analyzing
proteins into separate circular (periodic) chain segments and
expressing the coupled harmonic wave equations within each
segment via a first order differential equation, so as to define
topological invariants following SSHmechanical models.29 Each
segment could be defined by the protein’s geometrical circuit
topology.9 Algorithms could then find connections between
topological nontrivial and trivial protein segments, where robust
topological zero modes would be localized. The presence of zero
modes between protein fragments has been hypothesized to aid
in microtubule polymerization dynamics.44 This view can be
generalized to interpretations whereby edge modes play a role in
protein activation, catalysis, and related phenomena.

Thermodynamic Topology. Thus far, the configurational
topology of thermodynamic phases, and phonon topology
potentially pertienent to thermodynamic microstates in lattices
was defined, but can topology play a role in (out-of-equilibrium)

thermodynamic macroscopic states and open molecular
systems? Anisotropic thermodynamic states with salient non-
local symmetries could lead to topologically articulated, robust
molecular transport properties. Yet the thermodynamic aspects
of real-world materials inevitably force nonlinear and chaotic
dynamics, making experimental design and validation of
“topological thermodynamic states” a grand challenge. Over
the past few years, stochastic granular models and simu-
lations86−88 have stepped in to explore this exciting possibility,
and stimulated the study of elasticity and hydrodynamics from a
topological band standpoint. Recent examples are guidedmostly
by principles derived from CI models,16 driven via, e.g., internal
excitations, and underlying nonequilibrium conditions. Consid-
er for instance driving molecular rotors unidirectionally with
light (Figure 4a), as means to break time-reversal symmetry.89 A
vortex boundary state evolves in such systems at the light-on,
light-off interface (arrows around green periphery in Figure 4a).
For the purpose of this Perspective and assuming small
deviations from equilibrium, thermodynamic boundary states
could be rationalized by the coupling between translational and
rotational degrees of freedom at interfaces, and a tentative
rotranslational free energy deviation (ΔFrot, Figure 4b,c) close to
the equilibrium state (gray models, Figure 4b,c). In ref 89,
molecular dynamic simulations predict a localized boundary
state, as depicted by the time-averaged velocities of the center of
mass of the rotors, red triangles in Figure 4d. The underlying
model can be described by the hydrodynamics of spin−vorticity
coupling, via the constant (Γ), which represents the tendency of
rotors to drag other rotors along with it. Solving for the vorticity
(ω, the curl ∇× of the flow velocity), the authors demonstrate
that boundary states localize at interfaces irrespective of their
shape and defects. To study the topology of the hydrodynamic
model, the authors show that the hydrodynamic operator86,90

H2 = (−∇2 + λ−2) with λ−2 proportional to the angular or linear
damping times the identity matrix, can be mapped in terms of
the 2D Dirac band model Hamiltonian (Figure 4e,f). An
effective “Dirac mass” m ∼ λ−1 in a Dirac Hamiltonian leads to

Molecular systems are expected
to complement theoretical re-

search on thermal (non)-
equilibrium dynamic topological

matter.

Figure 4. Topology of (nonequilibrium) thermodynamic states. (a) Vortex states emerge when molecular rotors or microspinners are driven due to
coupling between rotational and translational degrees of freedom, and (b and c) may constitute the basis for future explorations of nonequilibrium
topological thermodynamic edge states, see text. (d) Molecular dynamics and (e and f) mapping of the underlying hydrodynamic model onto an
effective Dirac Hamiltonian, draw parallels to Chern insulators.89 In the model, the “Diracmass” ism∼ λ−1, where λ is a hydrodynamic damping length
arising from substrate friction. Adapted with permission from ref 89.
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the CI model,16 provided a time-dependent perturbation is
present. The corresponding topological edge states are also
observed, consistent with a chiral hydrodynamic flow in both
spin and vorticity (Figure 4).
The excitation of unidirectional molecular rotors for the

engineering and control of topological chiral thermodynamic
states can be technically challenging. An alternative is the
mechanical transformation of linear momentum into angular
momentum. This can be achieved by laminar vortex formation
through chiral lattices,91−93 similar to the acoustic effects40

introduced in Figure 1c. Such experimental realizations pose
challenges for incompressible and granular matter prone to
overdamping, leading to jamming. Notwithstanding this,
underdamped molecular systems at interfaces could overcome
these disadvantages, thereby harnessing the notions of spin-CI
models for paradigmatic topological function in soft matter at
near-to-equilibrium conditions.
In summary, topological tools are now routinely employed in

electronic, photonic, acoustic, and mechanical engineering. The
virtues of topological quantum solids in chemistry are well-
known,94,95 yet the relevance of the topological classification of
dynamic matter at finite temperatures is still the subject of
intense theoretical research. Experimental surveys and simu-
lations of physicochemical systems are expected to complement
theoretical efforts, toward the demonstration of unconventional
boundary states and properties of assemblies, reactions, and
system chemistry. To this end, we proposed three levels of
exploration: at the configurational topology level, where the
study of dynamic topological defects and real-space reaction
Hamiltonians is promising, yet the demonstration of nonlocal,
nontrivial functionality is challenging; at the topological
phononics level, where vibrational modes can be approximated
by topological band theory under limited thermal fluctuations;
and finally, topological thermodynamic states that are an
intriguing theoretical and experimental concept, which can be
phenomenologically studied by means of effective topological
band models. Future work on the classification of topological
thermodynamic states might benefit from exclusive topological
tool development beyond condensed matter physics, aided by
machine learning protocols which sample small deviations from
equilibrium for example. Overall, the prospect of topological
dynamic matter at finite temperatures is expected to stimulate
the development of new directions and proof-of-principle
studies in molecular and soft matter research.
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(79) Cojal-Gonzaĺez, J.; Li, J.; Stöhr, M.; Kivala, M.; Palma, C.-A.;
Rabe, J. Edge Phonon Excitations in a Chiral Self-Assembled
Supramolecular Nanoribbon. J. Phys. Chem. Lett. 2019, 10, 5830−5835.
(80) Li, J.; Wang, L.; Liu, J.; Li, R.; Zhang, Z.; Chen, X.-Q. Topological
Phonons in Graphene. Phys. Rev. B: Condens. Matter Mater. Phys. 2020,
101, No. 081403.
(81) Cooper, N.; Dalibard, J.; Spielman, I. Topological Bands for
Ultracold Atoms. Rev. Mod. Phys. 2019, 91, No. 015005.
(82) Khajetoorians, A. A.; Wegner, D.; Otte, A. F.; Swart, I. Creating
Designer Quantum States of Matter Atom-by-Atom. Nature Rev. Phys.
2019, 1, 703−715.
(83) Yan, L.; Liljeroth, P. Engineered Electronic States in Atomically
Precise Artificial Lattices and Graphene Nanoribbons. Adv. Phys.: X
2019, 4, 1651672.
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